Properties of the Polynomials Associated with the Jacobi Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry classes of polynomials associated with the dihedral group

‎In this paper‎, ‎we obtain the dimensions of symmetry classes of polynomials associated with‎ ‎the irreducible characters of the dihedral group as a subgroup of‎ ‎the full symmetric group‎. ‎Then we discuss the existence of o-basis‎ ‎of these classes‎.

متن کامل

Some Properties of Jacobi Polynomials

A main motivation for this paper is the search for the sufficient condition of the primality of an integer n in order that the congruence 1n−1 + 2n−1 + 3n−1 + · · · + (n− 1)n−1 ≡ −1 (mod n) holds. Some properties of Jacobi polynomials were investigated using certain Kummer results. Certain properties of Bernoulli polynomials as well as the Staudt–Clausen theorem for prime factors were also used...

متن کامل

Properties of the Exceptional (X`) Laguerre and Jacobi Polynomials

We present various results on the properties of the four infinite sets of the exceptional X` polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414–417; Phys. Lett. B 684 (2010), 173–176]. These X` polynomials are global solutions of second order Fuchsian differential equations with ` + 3 regular singularities and their confluent limits. We derive equivalent but much...

متن کامل

Cariñena Orthogonal Polynomials Are Jacobi Polynomials

The relativistic Hermite polynomials (RHP) were introduced in 1991 by Aldaya et al. [3] in a generalization of the theory of the quantum harmonic oscillator to the relativistic context. These polynomials were later related to the more classical Gegenbauer (or more generally Jacobi) polynomials in a study by Nagel [4]. For this reason, they do not deserve any special study since their properties...

متن کامل

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1986

ISSN: 0025-5718

DOI: 10.2307/2008181